Simplex noise is an improved version of Perlin noise. Compared to Perlin noise, simplex noise has the following advantages:
- simplex noise has a lower computational complexity and requires fewer multiplications.
- Simplex noise scales to higher dimensions (4D, 5D and up) with much less computational cost, the complexity is for dimensions instead of the of classic noise.
- Simplex noise has no noticeable directional artifacts.
- Simplex noise has a well-defined and continuous gradient everywhere that can be computed quite cheaply.
- Simplex noise is easy to implement in hardware
For a detailed explanation about simplex noise, here is a nice PDF: Simplex noise demystified. Here is a thread on OpenGL forum about this topic.
As usual, I quickly coded a small GeeXLab demo to test the simplex noise GLSL shader. The demo is available in GeeXLab code samples pack (GLSL_Simplex_Noise/ folder). You can download the complete code sample pack from this page or here:
[download#40#image]
Just start GeeXLab and load (or drag and drop) the DEMO.xml file in GeeXLab. That’s all!
You can find other shaders here: Shader Library.
Here is the complete GLSL shader (vertex and fragment shaders):
[Vertex_Shader] varying vec2 v_texCoord2D; varying vec3 v_texCoord3D; varying vec4 v_color; void main() { gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex.xyz; v_texCoord2D = gl_MultiTexCoord0.xy; v_texCoord3D = gl_Vertex.xyz * 0.05; v_color = gl_Color; } [Pixel_Shader] #define NORMALIZE_GRADIENTS #undef USE_CIRCLE #define COLLAPSE_SORTNET float permute(float x0,vec3 p) { float x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec2 permute(vec2 x0,vec3 p) { vec2 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec3 permute(vec3 x0,vec3 p) { vec3 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } vec4 permute(vec4 x0,vec3 p) { vec4 x1 = mod(x0 * p.y, p.x); return floor( mod( (x1 + p.z) *x0, p.x )); } uniform vec4 pParam; // Example constant with a 289 element permutation //const vec4 pParam = vec4( 17.0*17.0, 34.0, 1.0, 7.0); float taylorInvSqrt(float r) { return ( 0.83666002653408 + 0.7*0.85373472095314 - 0.85373472095314 * r ); } float simplexNoise2(vec2 v) { const vec2 C = vec2(0.211324865405187134, // (3.0-sqrt(3.0))/6.; 0.366025403784438597); // 0.5*(sqrt(3.0)-1.); const vec3 D = vec3( 0., 0.5, 2.0) * 3.14159265358979312; // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1 = (x0.x > x0.y) ? vec2(1.,0.) : vec2(0.,1.) ; // x0 = x0 - 0. + 0. * C vec2 x1 = x0 - i1 + 1. * C.xx ; vec2 x2 = x0 - 1. + 2. * C.xx ; // Permutations i = mod(i, pParam.x); vec3 p = permute( permute( i.y + vec3(0., i1.y, 1. ), pParam.xyz) + i.x + vec3(0., i1.x, 1. ), pParam.xyz); #ifndef USE_CIRCLE // ( N points uniformly over a line, mapped onto a diamond.) vec3 x = fract(p / pParam.w) ; vec3 h = 0.5 - abs(x) ; vec3 sx = vec3(lessThan(x,D.xxx)) *2. -1.; vec3 sh = vec3(lessThan(h,D.xxx)); vec3 a0 = x + sx*sh; vec2 p0 = vec2(a0.x,h.x); vec2 p1 = vec2(a0.y,h.y); vec2 p2 = vec2(a0.z,h.z); #ifdef NORMALISE_GRADIENTS p0 *= taylorInvSqrt(dot(p0,p0)); p1 *= taylorInvSqrt(dot(p1,p1)); p2 *= taylorInvSqrt(dot(p2,p2)); #endif vec3 g = 2.0 * vec3( dot(p0, x0), dot(p1, x1), dot(p2, x2) ); #else // N points around a unit circle. vec3 phi = D.z * mod(p,pParam.w) /pParam.w ; vec4 a0 = sin(phi.xxyy+D.xyxy); vec2 a1 = sin(phi.zz +D.xy); vec3 g = vec3( dot(a0.xy, x0), dot(a0.zw, x1), dot(a1.xy, x2) ); #endif // mix vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.); m = m*m ; return 1.66666* 70.*dot(m*m, g); } float simplexNoise3(vec3 v) { const vec2 C = vec2(1./6. , 1./3. ) ; const vec4 D = vec4(0., 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners #ifdef COLLAPSE_SORTNET vec3 g = vec3( greaterThan( x0.xyz, x0.yzx) ); vec3 l = vec3( lessThanEqual( x0.xyz, x0.yzx) ); vec3 i1 = g.xyz * l.zxy; vec3 i2 = max( g.xyz, l.zxy); #else // Keeping this clean - let the compiler optimize. vec3 q1; q1.x = max(x0.x, x0.y); q1.y = min(x0.x, x0.y); q1.z = x0.z; vec3 q2; q2.x = max(q1.x,q1.z); q2.z = min(q1.x,q1.z); q2.y = q1.y; vec3 q3; q3.y = max(q2.y, q2.z); q3.z = min(q2.y, q2.z); q3.x = q2.x; vec3 i1 = vec3(equal(q3.xxx, x0)); vec3 i2 = i1 + vec3(equal(q3.yyy, x0)); #endif // x0 = x0 - 0. + 0. * C vec3 x1 = x0 - i1 + 1. * C.xxx; vec3 x2 = x0 - i2 + 2. * C.xxx; vec3 x3 = x0 - 1. + 3. * C.xxx; // Permutations i = mod(i, pParam.x ); vec4 p = permute( permute( permute( i.z + vec4(0., i1.z, i2.z, 1. ), pParam.xyz) + i.y + vec4(0., i1.y, i2.y, 1. ), pParam.xyz) + i.x + vec4(0., i1.x, i2.x, 1. ), pParam.xyz); // Gradients // ( N*N points uniformly over a square, mapped onto a octohedron.) float n_ = 1.0/pParam.w ; vec3 ns = n_ * D.wyz - D.xzx ; vec4 j = p - pParam.w*pParam.w*floor(p * ns.z *ns.z); // mod(p,N*N) vec4 x_ = floor(j * ns.z) ; vec4 y_ = floor(j - pParam.w * x_ ) ; // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1. - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); vec4 s0 = vec4(lessThan(b0,D.xxxx)) *2. -1.; vec4 s1 = vec4(lessThan(b1,D.xxxx)) *2. -1.; vec4 sh = vec4(lessThan(h, D.xxxx)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); #ifdef NORMALISE_GRADIENTS p0 *= taylorInvSqrt(dot(p0,p0)); p1 *= taylorInvSqrt(dot(p1,p1)); p2 *= taylorInvSqrt(dot(p2,p2)); p3 *= taylorInvSqrt(dot(p3,p3)); #endif // Mix vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.); m = m * m; //used to be 64. return 48.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.,1.,1.,-1.); vec4 p,s; p.xyz = floor( fract (vec3(j) * ip.xyz) *pParam.w) * ip.z -1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p,vec4(0.))); p.xyz = p.xyz + (s.xyz*2.-1.) * s.www; return p; } float simplexNoise4(vec4 v) { const vec2 C = vec2( 0.138196601125010504, 0.309016994374947451); // First corner vec4 i = floor(v + dot(v, C.yyyy) ); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Force existance of strict total ordering in sort. vec4 q0 = floor(x0 * 1024.0) + vec4( 0., 1./4., 2./4. , 3./4.); vec4 q1; q1.xy = max(q0.xy,q0.zw); // x:z y:w q1.zw = min(q0.xy,q0.zw); vec4 q2; q2.xz = max(q1.xz,q1.yw); // x:y z:w q2.yw = min(q1.xz,q1.yw); vec4 q3; q3.y = max(q2.y,q2.z); // y:z q3.z = min(q2.y,q2.z); q3.xw = q2.xw; vec4 i1 = vec4(lessThanEqual(q3.xxxx, q0)); vec4 i2 = vec4(lessThanEqual(q3.yyyy, q0)); vec4 i3 = vec4(lessThanEqual(q3.zzzz, q0)); // x0 = x0 - 0. + 0. * C vec4 x1 = x0 - i1 + 1. * C.xxxx; vec4 x2 = x0 - i2 + 2. * C.xxxx; vec4 x3 = x0 - i3 + 3. * C.xxxx; vec4 x4 = x0 - 1. + 4. * C.xxxx; // Permutations i = mod(i, pParam.x ); float j0 = permute( permute( permute( permute ( i.w, pParam.xyz) + i.z, pParam.xyz) + i.y, pParam.xyz) + i.x, pParam.xyz); vec4 j1 = permute( permute( permute( permute ( i.w + vec4(i1.w, i2.w, i3.w, 1. ), pParam.xyz) + i.z + vec4(i1.z, i2.z, i3.z, 1. ), pParam.xyz) + i.y + vec4(i1.y, i2.y, i3.y, 1. ), pParam.xyz) + i.x + vec4(i1.x, i2.x, i3.x, 1. ), pParam.xyz); // Gradients // ( N*N*N points uniformly over a cube, // mapped onto a 4-octohedron.) vec4 ip = pParam ; ip.xy *= pParam.w ; ip.x *= pParam.w ; ip = vec4(1.,1.,1.,2.) / ip ; vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); #ifdef NORMALISE_GRADIENTS p0 *= taylorInvSqrt(dot(p0,p0)); p1 *= taylorInvSqrt(dot(p1,p1)); p2 *= taylorInvSqrt(dot(p2,p2)); p3 *= taylorInvSqrt(dot(p3,p3)); p4 *= taylorInvSqrt(dot(p4,p4)); #endif // Mix vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.); vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.); m0 = m0 * m0; m1 = m1 * m1; return 32. * (dot(m0*m0, vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + dot(m1*m1, vec2(dot(p3, x3), dot(p4, x4)))) ; } uniform float time; varying vec2 v_texCoord2D; varying vec3 v_texCoord3D; varying vec4 v_color; void main(void) { vec3 v = vec3(2.0 * v_texCoord3D.xyz * (2.0 + sin(0.5*time))); float n = simplexNoise3(v); gl_FragColor = v_color * vec4(0.5 + 0.5 * vec3(n, n, n), 1.0); }
This is cool stuff. Finally noise() in GLSL that is fast and decent!
Cool! Thanks!
This code has been taken from https://github.com/ashima/webgl-noise in violation of the MIT Expat license. Please see https://github.com/ashima/webgl-noise for the latest Perlin and simplex noise shaders with performance improvements and bug fixes.